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Abstract

Agricultural monitoring, in particular in developing coun-
tries, can help prevent famine and support humanitarian ef-
forts. A central challenge is yield estimation, which is to pre-
dict crop yields before harvesting.

We introduce a scalable, accurate, and inexpensive method
to predict crop yields using publicly available remote sens-
ing data. Our approach improves existing techniques in three
ways. First, we forego hand-crafted features traditionally
used in the remote sensing community and propose an ap-
proach based on modern representation learning ideas. We
introduce a novel dimensionality reduction technique that al-
lows us to train a Convolutional Neural Network or Long-
short Term Memory and automatically learn useful features
even when labeled training data is scarce. Finally, we incor-
porate a Gaussian Process component to explicitly model the
spatio-temporal structure of the data and further improve the
accuracy. We evaluate our approach on county-level soybean
production in the U.S. and show that our approach vastly out-
performs competing techniques.

Introduction

It is estimated that 795 million people still live without an
adequate food supply (FAO 2015), and that by 2050 there
will be two billion more people to feed (Dodds and Bartram
2016). Ending hunger and improving food security are pri-
mary goals in the 2030 Agenda for Sustainable Development
of the United Nations (United Nations 2015).

A central challenge to address food security issues is
yield estimation, namely being able to predict crop yields
well before harvesting. Agricultural monitoring, in partic-
ular in developing countries, can improve food production
and support humanitarian efforts in light of climate change
and droughts (Dodds and Bartram 2016).

Existing approaches rely on survey data and other vari-
ables related to crop growth (such as weather and soil prop-
erties) to model crop yield. This approach is very success-
ful in the United States, where data is plentiful and of rel-
atively high quality. Comprehensive surveys of weather pa-
rameters such as the Daymet (Thornton et al. 2014) and land
cover types such as the Cropland Data Layer (Boryan et al.
2011) are publicly available and greatly facilitate the crop
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yield prediction task. However, information about weather,
soil properties, and precise land cover data are typically not
available in developing countries which have the greatest
need for reliable crop yield prediction.

Remote sensing, on the other hand, is a globally available
and economical data source that has recently garnered much
interest. It is frequently used in computational sustainabil-
ity applications, such as species distribution modeling (Fink,
Damoulas, and Dave 2013; Kelling et al. 2012), poverty
mapping (Xie et al. 2015; Ermon et al. 2015), climate mod-
eling (Ristovski et al. 2013), and preventing natural disas-
ters (Boulton, Shotton, and Williams 2016). These multi-
spectral remote sensing images, which include additional in-
formation besides the traditional visible wavelengths (RGB)
and have fairly high spatial and temporal resolution, contain
a wealth of information on vegetation growth and thus on
agricultural outcomes. However, useful features are hard to
extract since the data are high-dimensional and unstructured.

In this paper, we propose an approach based on mod-
ern feature learning ideas, which have recently led to
massive improvements in a range of computer vision
tasks (Krizhevsky, Sutskever, and Hinton 2012; Karpathy et
al. 2014). We overcome the scarcity of training data by em-
ploying a new dimensionality reduction technique. Specif-
ically, we treat raw images as histograms of pixel counts,
and approximate the high-dimensional histogram with a
mean-field assumption. Deep learning architectures are then
trained on these histograms to predict crop yield. While this
approach performs well, it does not explicitly account for
spatio-temporal dependencies between data points. We over-
come this limitation by incorporating Gaussian Process on
top of deep models. We evaluate our approach on the task
of predicting county-level soybean production in the United
States. Experimental results show that our model outper-
forms competing techniques by a large margin, while re-
maining interpretable in terms of feature importance.

Related Work

Remote sensing data has been widely used for predict-
ing crop yield in the remote sensing community (Bolton
and Friedl 2013; Johnson 2014). However, all existing ap-
proaches we are aware of rely on hand-crafted features, on
the assumption that they can capture most of the informa-
tion related to vegetation growth contained in high dimen-



sional images. Some widely used features include Normal-
ized Difference Vegetation Index (NDVI) (Quarmby et al.
1993; Johnson 2014), two-band Enhanced Vegetation Index
(EVI2) (Bolton and Friedl 2013) and Normalized Difference
Water Index (NDWI) (Satir and Berberoglu 2016). While a
significant effort has been devoted to feature engineering,
existing features are fairly crude indexes which depend on
a small number (usually two) of the available image bands.
Inspired by recent successes in computer vision and speech
recognition and in contrast to existing approaches, we are
the first to use modern representation learning ideas from Al
to automatically discover relevant features from raw data.
Our experimental results suggest that our learned features
are much more effective, and that bands that are typically
ignored could play an important role.

Second, high-order moments of the features are rarely ex-
plored in existing approaches. In most settings, ground truth
average yield data is provided over a region as the regres-
sion output, while features are given as input for all the lo-
cations within that region. Most works either calculate the
mean (first moment) of the features over the region of inter-
est (Johnson 2014) or do sampling (Kuwata and Shibasaki
2015). In contrast, our model works directly with the entire
pixel distribution over a region. Using a mean-field assump-
tion to achieve tractability, we are able to learn features from
the transformed normalized histograms.

Third, most works assume that crop yields are mutu-
ally independent and identically distributed over space and
time. Therefore, crop yields are predicted with a regression
model separately for each location (Bolton and Friedl 2013;
Johnson 2014). However, spatial and temporal correlations
that are not explained by the available covariates are likely
to be present (e.g., due to soil properties). Thus, we propose
the use of a Gaussian Process (GP) model on top of our deep
architectures to explicitly account for spatial and temporal
relationship across data points.

Preliminaries

We will start by reviewing the building blocks for our model,
then elaborate on our approach.

Deep Learning Models

Deep learning models can be viewed as a complex non-
linear mapping that can learn a hierarchical representation of
the data. Deep Neural Network (DNN), Convolutional Neu-
ral Network (CNN) and Long-short Term Memory (LSTM)
are some typical architectures (LeCun, Bengio, and Hinton
2015). They are typically composed of a set of layers such
that the output of one layer is the input of the next. CNN and
LSTM are used in our proposed model.

DNN is the basic form of feed-forward neural network
that is solely built on fully connected layers. Each fully
connected layer takes a vector x € R" as input followed
by a nonlinear function f(-) (usually a rectified linear unit
(ReLU) or tanh) and finally output a vector ¢ € R™ such
that

c=f(Wx+b)

where W € R™*" is the weight and b € R" is the bias.

A CNN is mainly composed of three types of layers: con-
volution layers, pooling layers and fully connected layers. It
is distinct by its convolution layer that share weights across
first two input dimensions (2-d convolution) and thus greatly
saves parameters. A convolution layer usually takes a ten-
sor & € R"w*d ag input, followed by a nonlinear func-
tion (usually ReLU) and sometimes a pooling layer (usu-

ally max-pooling), and finally outputs a tensor ¢ € R *%xd
which can be formulated as

c=p(f(Wxa+b))

where p(+) is the pooling function, f(-) is the nonlinear func-
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tion, W € RI*!xd g the weight for convolution filter, “x” is
the 2-dimensional convolution operator over the first two di-
RI:L xwxd

mensions i.e., h and w, b € is the bias term which

is tiled by b; € Rix1xd,

LSTM is a special type of Recursive Neural Network
(RNN) that takes sequential data as input. For each time step
t, it maintains a hidden state vector h; that solely depends on
the previous state h;_1, while provides an output o; that is
only determined by the hidden state h;. The mappings from
hi_1 to hy, usually encoded as a LSTM cell, and the map-
pings from h; to o, usually represented as a fully connected
layer, share parameters across all time steps thus also greatly
save parameters.

Gaussian Process Modeling

The Gaussian Process (GP) is a non-parametric probabilistic
model that is defined as a collection of random variables of
which any finite subset have a joint Gaussian distribution
(Rasmussen 2006). A GP is defined as a random process
with Gaussian correlated noise:

f(w) ~ gp(m(w)7 k(w’ :B/)>7

where the mean function m(x) and the kernel function
k(x,x") denote the expectation E[f(x)] and the covariance
cov(f(x), f(x')) respectively.

The mean function m(x) could be interpreted as a pri-
ori. In this paper, we employ the linear GP model and
the mean function is assumed to be linear in the features
m(x) = h(z)? 3 where h(-) is a set of basis functions. For
the covariance function, a commonly used one is the square
exponential one:

/(|12
cof(e). f@) = o*exp (12251,
Also, since we could only access to noisy observations in
practice, we introduce an extra Gaussian noisy term (with
variance o2) in the covariance function:

k(z, ') = cov(f(x), f(x') + 02000

where 0, 5 is the Kronecker delta. We will discuss more
about the learning of 3, 0, o, r in later sections.

Proposed Approach
Problem Setting

We consider the problem of predicting the average yield of a
type of crop (e.g., soybean) for a region of interest based on



a sequence of remotely sensed images taken before the har-
vest in a year. Specifically, we are interested in the average
yield per unit of area in a given geographical region, e.g., a
county or district. As input, we are given a sequence of mul-
tispectral images (1), - - -, I(™)) covering the area of inter-
est. Each multispectral image I® corresponds to a different
time ¢ within a year, and is a tensor I () ¢ RIxwxd \where
l, w are the number of horizontal and vertical pixels, and d
is the number of bands per pixel. Note that a general “crop
mask” identifying pixels corresponding to farmland is avail-
able worldwide at 500m resolution (DAAC 2015). While we
can mask out pixels that do not correspond to farmland, we
do not generally know which pixels correspond to the par-
ticular crop we are targeting (e.g., soybeans).

Our goal is to learn a model that maps these raw image se-
quences to the average crop yield. Intuitively, this is possible
since plant growth and other relevant factors are captured in
the images. As training data, we are given a set

D= {((I(l)a o ',I(m),gloc,gyear)l,y1)7 Tty

((I(l)a Ty I(m)’ Gloc, gyear)Na yN)}

of image sequences, geographic location gjoc, year gyear and
corresponding ground truth crop yields y; € R*. We will
also consider the (harder) problem of making predictions
based on sub-sequences (IY),--- I(") for r < m. This
corresponds to the problem of forecasting the yield well be-
fore the harvest date in an online manner, when only a subset
of the remotely sensed data is available.

From Raw Images to Histograms

Given the scarcity of labeled training data (| D| is usually less
than 10,000), directly training a deep model end-to-end is
not feasible. Pre-training on popular benchmarks from com-
puter vision like Imagenet is also not possible, because re-
motely sensed images are very different and multi-spectral.
We therefore designed a dimensionality reduction technique
under the assumption of permutation invariance. Our ap-
proach is based on the following intuition: we don’t expect
the average yield to depend too much on the position of the
image pixels since they merely indicate the locations of the
cropland. While it’s understandable that there is some de-
pendence on the position (e.g., due to soil properties or ele-
vation), to achieve tractability we ignore these potential de-
pendencies.

Assuming permutation invariance holds, only the number
of different pixel types in the image (pixel counts) are in-
formative. In other words, there is no loss of information
in mapping the high-dimensional image into a histogram of
pixel counts'. Assuming pixel values in digital images are
discrete and can take up to b different values per band, the
resulting histogram would have b¢ bins, which might not be
practical (e.g., each band intensity can take b = 256 dif-
ferent values, and d = 9). Therefore, we separately con-
sider each band I, in an image I®) where index ¢ is omit-
ted for notational simplicity, discretize the pixel values into

!Given the pixel counts from a histogram, one can reconstruct
an image equivalent under the permutation invariance assumption
by arbitrarily placing the pixels.

b bins and produce an histogram h;, € R® for each indi-
vidual band £k = 1,---,d. By concatenating all hj into
H = (hy,---,hy), we obtain a compact representation of
the original multi-spectral image. By treating each band in-
dependently, we are implicitly making a mean-field assump-
tion (Parisi 1988), i.e., we are assuming that the (normal-
ized) histogram of a multi-spectral image I can be approx-
imated as a product of simpler (normalized) histograms h;
over individual bands.

From Histograms to Crop Yield

While the histogram approach outlined in the previous sec-
tion can drastically reduce the dimensionality on the input
data, the desired mapping (H™), ... H(™) — y, is still
highly non-linear and complex. Rather than hand-crafting
features, we leverage ideas from representation learning
ideas and use deep models to automatically learn relevant
features from data.

The sequential nature of the inputs (H(), ... H™)
suggests the use of temporal models, such as LSTMs. We
use an LSTM architecture that takes sequences of vectors as
input, and add a fully connected layer on the last LSTM cell
to finally yield the prediction y corresponding to the input
sequence, as is shown in Figure 1b. To fit the model, we first
flatten each histogram H®) € R**? into a vector S € R”,
7 = b x d, then feed the sequence (S(V), - .- S(™)) into the
network. L2 loss is used for the regression task. To prevent
overfitting, we regularized the network by adding a dropout
layer with dropout rate 0.75 after each state transition (Pham
et al. 2014).

Inspired by the success of CNN architectures on se-
quential data (Karpathy et al. 2014), we also use a CNN
architecture to model the non-linear mapping. We stack
(HW ... . H™) into a 3-D histogram T' € RU*mxd
where T, = H®), ¢t =1, m is the ™ component in the
second dimension of T'. We feed the 3-D histograms as in-
put to the CNN, and the convolution operation is performed
over the “bin” and “time” dimensions. Some typical 3-D his-
tograms are shown in Figure 1a. The visualization exhibits
distinct visual patterns corresponding to different crop yield
conditions. We thus expect our CNN architecture to learn
useful features from these 3-D histograms.

The structure of our CNN model is shown in Figure lc.
We note that in our case we don’t want the location invari-
ance property given by the pooling layer (LeCun, Bengio,
and Hinton 2015), since different locations in the histogram
have different physical meanings. We solve the problem by
replacing the pooling layer by the stride-2 convolution layer
to reduce the size of the intermediate feature maps. We use
batch normalization to facilitate gradient flow (Ioffe and
Szegedy 2015), and dropout with rate 0.5 to prevent over-
fitting (Gal and Ghahramani 2015), after each convolutional
layer.

Integrating the Spatio-temporal Information: Deep
Gaussian Process

There are many features that are relevant to crop growth
that cannot be revealed by remote sensing images, such as
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Figure 1: Visualization of the input data and used architectures. Left: Figures of typical 3-D histograms T' € R®*™*¢ flattened
in the band dimension d under (i) low crop yield, (ii) mid crop yield and (iii) high crop yield conditions are shown in the left
panel. Each row of squares represents a different spectral band, while each column represents an individual data point. Each
square is a slice of 7', where the x-axis corresponds to the “time” dimension m, and the y-axis to the “bin” dimension b.
Brighter pixels indicate higher pixel counts in that bin. There exists distinctive visual differences between high yield and low
yield conditions (for example in the second and the seventh bands). Mid: The adopted LSTM structure. Right: The adopted
CNN structure, where stride 1 convolution layers are in light blue, stride 2 convolution layers are in dark blue and a fully

connected layer is attached at the end.

the soil type, fertilizer rate, etc. These features could be in-
herent to specific locations (e.g., soil type), and may not
change significantly over time, thus could exhibit spatial and
temporal patterns. To illustrate this point, we draw a vari-
ogram (Cressie and Hawkins 1980) on the absolute predic-
tion error of the CNN model introduced in the previous sec-
tion (trained on the data described in the Experimental sec-
tion below) in Figure 2. A variogram illustrates the variance

Variance
©
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Figure 2: A variogram on the absolute prediction error of the
proposed CNN model.

across data points as a function of their geographical dis-
tance. The result shows that the errors corresponding to data
points that are spatially closer tend to vary less (lower vari-
ance). Therefore, it suggests that we can reduce the error by
incorporating a Gaussian Process model on the top of the
deep models previously described (Hinton and Salakhutdi-
nov 2008; Wilson et al. 2015).

The analysis above indicates that the errors could cor-
relate with each other spatially and temporally. This moti-
vates us to design a linear Gaussian Process model where
the mean function is linear with respect to the deep features,
i.e., the last layer’s input in the deep models, and the covari-
ance kernel is determined by spatio-temporal information.
More concretely, let x = (I W T g, Jyear) denote
the original data sample, h(x) denotes the feature vector ex-
tracted from the deep models based on (I"), ... T0™)) and
9 = (Gioc, Gyear)- Then in our Deep Gaussian Process model,
the mean function is defined as

m(x) = h(z)" B
where h(-) treats the deep models as a set of basis functions,
3 follows a Gaussian prior 3 ~ N (b, B), the kernel func-
tion is
_ Hgloc - gllocH2 _ Hgyear - g§ear||2

2 2
2Tloc 2ryear

k(z,z') = 0% exp

+o? Og.9’

The kernel function here can be viewed as a special form
of squared exponential kernel with automatic relevance de-
termination (ARD) parameters (Chu and Ghahramani 2005),
where spatial and temporal terms share ARD parameters.
Furthermore, in the experiment, we assign b as the last
layer’s weight in the deep models and B = o1, while
treat o, 0y, Oc, Tioc aNd Tyeqr as hyperparameters. During
the training phase, we derive analytical solution for 3 and
conduct grid search for the hyperparameters based on cross-
validation. For the testing phase, we employ the traditional
prediction scheme used in Gaussian process. More details in
both phases are described in (Rasmussen 2006).



Experiments
Data Description

To compare with prior work, we evaluate our model in the
United States. In addition, we choose soybean as the target
crop, since it is widely investigated by prior work (Bolton
and Friedl 2013; Johnson 2014).

The input data we use includes remote sensing data on
surface reflectance, land surface temperature and land cover
type derived from the MODIS satellite, which is available
world-wide (DAAC 2015). We use multi-spectral images
collected 30 times a year, from the 49" day to the 281%"
day at 8-days intervals. We discretize all the images using
32 bins to compute the pixel histograms. The resulting input
histogram is (H™) ..., H™), H®) ¢ R**? with b = 32,
d = 9 and m = 30. The ground truth output data is the
yearly average soybean yield at the county-level measured
in bushel per acre, which is made publicly available by the
USDA (USDA 2016).

We select 11 states in the U.S. that account for over 75%
of the national soybean production, and use data from 2003
to 2015, resulting in |D|= 8945 data points in total. All
sources of remote sensing data are cropped according to
county borders, while non-crop pixels are removed with the
help of general world-wide land cover data (DAAC 2015).
More details are provided in the appendix.

Competing Approaches

We compare our model with widely used crop yield pre-
diction models. The baseline methods include ridge regres-
sion (Bolton and Friedl 2013), decision tree (Johnson 2014)
and DNN (Kuwata and Shibasaki 2015) which has 3 hid-
den layers with 256 neurons each. Their input is a sequence
of m = 30 average NDVI values for the region of interest.
Each element of the sequence is computed by first averag-
ing the corresponding image I*) across the region, and then
calculating the NDVI value (which is a scalar). Note that tra-
ditionally, precise pixel mask (e.g., soybean mask) is used to
remove irrelevant pixels in input images while weather data
are also used as input, yet for comparison they are provided
with the same source of data, i.e., only remote sensing data,
as our proposed model. The hyperparameters in these mod-
els are chosen by cross-validation.

Results

LSTM CNN

Year || Ridge | Tree | DNN || LSTM +GP CNN +GP

2011 9.00 [7.98]997 || 583 | 577 | 576 | 5.7
2012 695 | 74 | 758 || 622 | 6.23 | 591 | 5.68
2013 7.31 |8.13| 9.2 639 | 596 | 5.5 | 5383
2014 8.46 | 7.5 | 7.66 || 6.42 57 | 527|489
2015 8.10 |7.64|7.19 || 647 | 549 | 64 | 5.67

Average || 7.96 |7.73| 832 || 6.27 | 5.83 | 5.77 | 5.55

Table 1: The RMSE of county-level model performance.

We report the Root Mean Square Error (RMSE) of our
county-level predictions in Table 1. The result is averaged

over 2 runs. Each row corresponds to predictions made for
that year, using a model trained on data from all preced-
ing years. Learning rates and stopping criteria are tuned
on a hold-out validation set (10%). Our results demonstrate
that our CNN and LSTM approaches outperform compet-
ing methods significantly. By adding the GP component, our
models achieve even better performance, with 28 percent re-
duction of RMSE from the best competing methods.

We average our county-level predictions to compare with
USDA annual US-level yield estimates, in terms of Mean
Absolute Percentage Error (MAPE). Results show that our
model outperforms USDA predictions by 15% on average
in August and September. Note that USDA predictions are
survey-based, which can be costly to scale to other regions.

Ours || USDA | Ours ||[USDA | Ours || USDA | Ours
(Jul.) || (Aug.) | (Aug.) || (Sept.) | (Sept.) || (Oct.) | (Oct.)

MAPE || 5.65 || 3.92 | 3.37 414 | 341 248 | 3.19

Table 2: The MAPE of US-level model performance, aver-
aged from 2009 to 2015.

To show that the GP has the capability of removing spa-
tially correlated errors, we plot the prediction errors of the
CNN model for year 2014 in Figure 3. As previously shown
in the variogram of Figure 2, it is apparent that errors are
spatially correlated (there are clusters of blue and red coun-
ties). After adding the GP component, the the correlation is
effectively reduced. Intuitively, we believe the errors are due
to properties that are not observable in remote sensing im-
ages (e.g., soil). The GP part learns these patterns from past
training data and effectively corrects them.

(b) CNN+GP

Figure 3: County-level error maps before and after adding
the GP. The color represents the prediction error in bushel
per acre.

Real Time Prediction throughout the Year

In the U.S., soybean is often planted in May and June and
harvested in October and November. Early crop yield pre-
diction is essential for food safety applications. To this end,
we train and test our model on a sub-sequence of the input
(IM ... T(M) for r < m. Figure 4 shows the performance
if we tried to predict the harvest each month in an online
manner, given only the data available up to that point.

The figure shows that none of the models is perform-
ing well in early months, probably because there is not yet



enough information on plant growth. But as we gather more
information, all the models improve, and the gap between
our models and competing models is increasing. This sug-
gests that our deep architectures are more suitable for ma-
nipulating increasingly complex data.

Ridge
Tree

DNN
LSTM
LSTM+GP
CNN
CNN+GP

14

12

1I0nn|

Root Mean Square Error

Jul Aug
Predicting month

Figure 4: Model performance in each month measured in
RMSE. The results are averaged from 2011 to 2015.

Understanding Feature Importance

To understand how our model is utilizing the input data, we
provide an analysis inspired by the permutation test for ran-
dom forests (Breiman 2001). More specifically, we consider
the effect of randomly permuting the values of a specific
feature over the entire data (without changing the other fea-
tures). For our 3-D histogram input, we (separately) permute
across time and band dimension by shuffling a slice of the
histogram across all the data, while holding the rest fixed.
The average performance from 2011 to 2015 of the models
trained on this perturbed data are shown in Figure 5 and 6.
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Figure 5: The increase of RMSE after permutation over
bands. Models in different months are evaluated.

The permutation test across bands in Figure 5 reveals two
useful insights on the relative importance of different bands
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Figure 6: The increase of RMSE after permutation over time
within a year. The model with complete data is used for eval-
uation.

for yield prediction. Traditionally band 2, a near infrared
band, is viewed as a key factor in revealing crop growth.
While putting some emphasis on band 2, our model focuses
on band 7 mostly, which is a short-wave infrared band and
is ignored by traditional approaches. Besides, the high de-
pendence on land surface temperature is also confirmed by
previous work (Johnson 2014). Second, the importance of
different bands varies in the online setting. Bands 2 and 7
that are related to crop growth are given higher relative im-
portance in later months (when plants starts growing), while
temperature bands 8 and 9 are significant in early months
(when plants haven’t grown yet) since they are the only in-
formative features at that point.

The permutation test across time in Figure 6 is also infor-
mative. Surveys show that soybean planting usually starts
on day 110 and ends on day 190, while harvest usually start
on day 250 (USDA 2010). Our figure illustrates that the im-
portance of data which our model captures roughly synchro-
nizes with the crop growth, while peaking at the days before
harvest (around day 240).

Conclusion

This paper presents a deep learning framework for the task
of crop yield prediction, based on inexpensive remote sens-
ing data. It allows for real time forecasting throughout the
year and is applicable world-wide, especially for developing
countries where field surveys are hard to conduct. We are
the first to use modern representation learning ideas for crop
yield prediction, and successfully learn much more effective
features from raw data compared with the the hand-crafted
features that are typically used. We propose a dimension-
ality reduction approach based on histograms and present
a Deep Gaussian Process framework that successfully re-
moves spatially correlated error, which might inspire other
applications in remote sensing and computational sustain-
ability. The model provides us with the state-of-the-art pre-
diction accuracy and will have great impact in sustainable
agriculture and food security.
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